This Quiz is protected.
Click on the "Subscribe Button" below to unlock.
Note: If you have Already Subscribed and you are seeing this message, it means you are logged out. Please Log In using the Login form Below to Carry on Studying!
Question
Mr Sarfo borrowed $25,000.00 from AFIAK Financial Services at 21% simple interest per annum for 3 years. If he was able to pay back the loan in 2 years at equal yearly instalments, how much did he pay each year?
Solution
S.I = \( \frac{P\: \times \: R \: \times \: T}{100} \)
S.I = \( \frac{2500\: \times \: 3 \: \times \: 21}{100} \)
S.I = $15,750
Amount = (P + S.I)
= 2,500 + 15,750
= $40,750
Amount paid each year
⇒ \( \frac{40750}{2} \)
Answer = $20,375.00
Question
Two consecutive numbers are such that the sum of thrice the smaller and twice the larger is 17. Find correct to three significant figures, the smaller number as a percentage of the sum of the two numbers.
Solution
Let the consecutive numbers be x + 1 and x + 2
3(x + 1) + 2(x + 2) = 17
3x + 3 + 2x + 4 = 17
5x + 7 =17
5x = 17 – 7
5x = 10
x = \( \frac{10}{5} \)
x = 2
Since the consecutive numbers are x + 1 and x + 2
The numbers are;
2 + 1 = 3
2 + 2 = 4
smallest = 3
total number = 3 + 4 = 7
percentage = \( \frac{3}{7} \scriptsize \: \times \: 100 \% \)
= 42.857%
Answer = 42.9% (3 s.f)
Question
A man left town M at 10.00a.m. and travelled by car to town N at an average speed of 72km/h. He spent 2 hours for a meeting and returned to town M by bus at an average speed of 40km/h. If the distance covered by the bus was 2km longer than that of the car and he arrived at town M at 1:55p.m., calculate the distance from M to N.
Solution
Start time = 10.00am
= 10 hrs
time spent travelling = 1.55pm
⇒ 12.00 + 1.55 = 13.55hrs
⇒ 13.55 hrs – 10hrs = 3.55 hrs
meeting time = 2hrs
Time on road = 3 hrs 55m – 2hrs = 1hrs 55min
1hr 55 mins = \( \frac{115}{60} \scriptsize \: hours \\ = \frac{23}{12} \scriptsize \: hours\)
Let ‘x’ be distance from M to N and ‘t’ be time spent from M to N
Speed = \( \frac{distance}{time} \)
72 = \( \frac{x}{t} \)
t = \( \frac{x}{72} \)….(i)
Return time = \( \frac{23}{12} \scriptsize \: – \: t \)
⇒ \( \normalsize \frac{23}{12} \scriptsize \: -\: t = \normalsize \frac{x\:+\:2}{40}\)
⇒ \( \frac{23}{12}\: -\: \frac{x}{72} = \frac{x\:+\:2}{40}\)
⇒ \( \frac{138\:-\:x}{72} = \frac{x\:+\:2}{40}\)
40(138 – x) = 72(x + 2)
690 – 5x = 9x + 18
9x + 5x = 690 – 18
14x = 672
x = \( \frac{672}{14} \)
x = 48km
Answer ⇒ x = 48km
Question
The points X, Y and Z are located such that Y is 15km south of X, Z is 20km from X on a bearing of 270º. Calculate, correct to:
(a) two significant figures, Â |YZ|
(b) the nearest degree, the bearing of Y from Z
(a) to two significant figures, Â |YZ|
Solution
Using Pythagoras Theorem
⇒ \(\scriptsize |YZ|^2 = 15^2 \: + \: 20^2 \\ \scriptsize = 225 \: + \: 400 \\ \scriptsize = |YZ|^2 = 625 \\\scriptsize = |YZ| = \sqrt{625} \\ \scriptsize|YZ| = 25 \: km \)
Answer ⇒ |YZ| = 25km
(b) to the nearest degree, the bearing of Y from Z
Solution
tan θ = \( \frac{15}{20} \)
θ = \( \scriptsize tan^{-1} \left( \frac{15}{20}\right) \)
θ = 26.8699º
Bearing of Y from Z
= 90° + 36.8699
= 126.8699
Answer⇒ \( \scriptsize \simeq 127^o\)
Question
NOT DRAWN TO SCALE
In the diagram, \( \scriptsize \bar{AD} \) is a diameter of a circle with centre O. If ABD is a triangle in a semi-circle and ∠OAB = 34º,
find: (a) ∠OBD (b) ∠OCB
(a) ∠OBD
Solution
⇒ \( \scriptsize \hat{OAB} = \hat{OBA} = 34^o \)
(base angles of an isosceles triangle)
⇒ \( \scriptsize \hat{ABD} = 90^o \)
(angles in a semi-circle)
∴ \( \scriptsize \hat{OBD} = \hat{ABD} \: – \: \hat{OBA} \)
= 90º – 34º
= 56°
Answer:  ∠OBD = 56°
(b) ∠OCB
Solution
⇒ \( \scriptsize \hat{BOC} \: + \: \hat{OBC} \: + \: \hat{OCB} = 180^o \)
(sum of angles in a triangle)
⇒ \( \scriptsize \hat{BOD} = \hat{OAB} \: + \: \hat{OBA} \)
(sum of two opp. interior = exterior)
⇒ \( \scriptsize \hat{BOD} = 34 + 34 \)
⇒ \( \scriptsize \hat{BOD} = 68^o \)
Consider ΔOCB
⇒ \( \scriptsize \hat{OBC} = 90^o \)
(angles in a semi-circle)
∴ \( \scriptsize 68^o \: + \: 90^o \: + \: \hat{OCB} = 180^o \)
⇒ \( \scriptsize \hat{OCB} = 180^o \: -\: 158^o \)
⇒ \( \scriptsize \hat{OCB} = 22^o \)
Answer ⇒  \( \scriptsize \hat{OCB} = 22^o \)
Question
(a) A man shared his property among his children as follows:
Represent the information on a pie chart
Solution
Child’s Name | Percentage | Angle (Deg) |
Ann | 5 | \( \frac{5}{100} \scriptsize \: \times \: 360^o = 18^o\) |
Afia | 15 | \( \frac{15}{100} \scriptsize \: \times \: 360^o = 54^o\) |
Kojo | 10 | \( \frac{10}{100} \scriptsize \: \times \: 360^o = 36^o\) |
Nuno | 45 | \( \frac{45}{100} \scriptsize \: \times \: 360^o = 162^o\) |
Akosua | 25 | \( \frac{25}{100} \scriptsize \: \times \: 360^o = 90^o\) |
Total | 100 | \( \scriptsize 360^o \) |
Answer
(b) A box contains 5 red, 3 green and 4 blue identical beads. Calculate the probability that a girl takes away two red beads, one after the other, from the box.
Solution
5 Red, 3 Green, 4 Blue
Total beads = 5 + 3 + 4 = 12
Pro. (taking the 1st red) = \( \frac{5}{12} \)
Pro. (taking the 2nd red) = \( \frac{4}{11} \)
Pro. (two red beads) = \(\frac{5}{12} \: \times \: \frac{4}{11} \)
Answer = \(\frac{5}{33} \)
Question
(a) In a class of 80 students, \( \frac{3}{4} \) study Biology and \( \frac{3}{5} \) study Physics. if each student studies at least one of the subjects.
(i) draw a venn diagram to represent this information
Solution
U = 80
n(B) = \(\frac{3}{4}\)
n(P) = \(\frac{3}{5}\)
Answer
Biology = \( \frac{3}{4} \scriptsize \: \times \: 80 = 60 \)
Physics = \( \frac{3}{5} \scriptsize \: \times \: 80 = 48 \)
(ii) how many students study both subjects;
Solution
80 = 60 – x + x + 48 – x
80 = 108 – x
x = 108 – 80
x = 28
Answer = 28
(iii) find the fraction of the class that study Biology but not Physics.
Solution
fraction = \( \frac{60 \:-\:28}{80}\)
= \( \frac{32}{80}\)
Answer = \( \frac{2}{5}\)
Question
Johnson and Jocatol Ltd. Owned a business office with floor measuring 15m by 8m which was to be carpeted. The cost of carpeting was GHȼ890.00 per square metre. If a total of GHȼ216,120.00 was spent on painting and carpeting, how much was the cost of painting?
Solution
Area of floor = 15 x 18
= 120m2
cost of carpeting = 120 x 98 = 106800
cost of painting = 216,120 – 106,800
Answer = GHȼ 109,320.00
Question
(a) Copy and complete the table of values for the relation:
⇒ \( \scriptsize y = 2x^2 \: -\: x \: -\: 2 \\ \scriptsize\: for \: -4 \leq x \leq 4 \)
Solution
(b) Using a scale of 2cm to 1 unit on the x-axis, and 2cm to 5 units on the y – axis, draw the graph of
⇒ \( \scriptsize y = 2x^2 \: -\: x \: -\: 2 \\ \scriptsize\: for \: -4 \leq x \leq 4 \)
Solution
(c) On the same axes, draw the graph of  y = 2x + 3
Solution
(d) Use the graph to find the:
(i) roots of the equation \( \scriptsize 2x^2 \: – \: 3x \: – \: 5 = 0 \)
Solution
Answer⇒ x = -1 and x = 2.5
(ii) range of values for which \( \scriptsize 2x^2 \: – \: x \: – \: 2 < 0 \)
range of values of x
Answer⇒ \( \scriptsize -0.8 < x < 1.2 \)
Question
In ΔPQR, ∠PQR = 90º. If its area is 216cm² and |PQ|:|QR| is 3:4
Find |PR|
Solution
A = \( \frac{1}{2} \scriptsize |PQ||QR| sin \theta \)
216 = \( \frac{1}{2} \scriptsize |PQ||QR| sin 90 \)
⇒ \( \frac{|PQ|}{|QR|} = \frac{3}{4}\)
⇒ \( \scriptsize |PQ| = \normalsize \frac{3}{4} \scriptsize |QR| \)
216 = \( \frac{1}{2} \: \times \: \frac{3}{4} \scriptsize |QR| |QR| \: \times \: 1 \)
216 = \( \frac{3}{8}Â \scriptsize |QR|^2Â \)
⇒ \( \scriptsize |QR|^2 = \normalsize \frac{216 \: \times \: 8}{3} \)
⇒ \( \scriptsize |QR| = \sqrt{576} \)
⇒ \( \scriptsize |QR| = 24 \: cm\)
⇒ \( \scriptsize |PQ| = \normalsize \frac{3}{4} \: \scriptsize |QR| \)
⇒ \( \scriptsize |PQ| = \normalsize \frac{3}{4} \scriptsize \: \times \: 24 = 18cm \)
⇒ \( \scriptsize |PR|^2 = 18^2 \: + \: 24^2 \)
⇒ \( \scriptsize |PR| = \sqrt{18^2 \: + \: 24^2}\)
⇒ \( \scriptsize |PR| = \sqrt{900}\)
⇒ \( \scriptsize |PR| = 30 \: cm\)
Answer⇒ \( \scriptsize |PR| = 30 \: cm\)
Question
The present ages of a man and his son are 47 years and 17 years respectively. In how many years would the man’s age be twice that of his son?
Solution
let x be the number of years
Man’s age = 47
Son’s age = 17
∴ 47 + x = 2(17 + x)
47 + x = 34 + 2x
2x – x = 47 – 34
x = 13 yrs
Answer⇒ x = 13 yrs
Question
NOT DRAWN TO SCALE
In the diagram, PQRS is a trapezium with \( \scriptsize \bar{QR} || \bar{PS} \)
U and T are points on \( \scriptsize \bar{PS} \) such that \( \scriptsize \bar{PU}Â = 5cm, \:\bar{QU} = 12cm\)
and ∠PUQ = ∠STR =90°. If the area of ΔUQR = 20 cm2, calculate to the nearest whole number, the:
(a) Perimeter of the trapezium.
Solution
Area of ΔUQR = \( \frac{1}{2} \scriptsize \: \times \: b \: \times \: h \)
20 = \( \frac{1}{2} \scriptsize \: \times \: b \: \times \: 12 \)
40 = 12b
b = \( \frac{40}{12} \scriptsize = 3.33\:cm \)
b = |QR| = |UT| = 3.33cm
⇒ \( \scriptsize |PQ|^2 = 12^2 \: + \: 5^2 \)
⇒ \( \scriptsize |PQ|^2 = 144 \: + \: 25 \)
⇒ \( \scriptsize |PQ|^2 = 169 \)
⇒ \( \scriptsize |PQ| = \sqrt{169} \)
⇒ \( \scriptsize |PQ| = 13\:cm \)
⇒ \( \scriptsize |QU| = |RT| = 12\:cm \)
ΔRTS
sin 50º = \( \frac{12}{RS} \)
|RS| = \( \frac{12}{sin\:50^o} \)
|RS| = 15.6649cm
tan 50º = \( \frac{12}{TS} \)
|TS| = \( \frac{12}{tan\:50^o} \)
|TS| = 10.069cm
Perimeter = addition of all boundaries
p = |PQ| + |QR| + |RS| + |TS| + |UT| + |PU
P = 13 + 3.33 + 15.6649 + 10.069 + 3.33 + 5
p = 50.3939
p ≅ 50 cm ( nearest whole number)
Answer⇒ Perimeter ≅ 50 cm
(b) Area of the trapezium.
Solution
Area of trapezium = \( \frac{1}{2} \scriptsize h(a \: + \: b)\)
A = \( \frac{1}{2} \scriptsize \: \times \:Â 12(QR \: + \: PS)\)
|PS| = 5 + 3.33 + 10.069 = 18.399
A = \( \frac{1}{2} \scriptsize \: \times \:Â 12(3.33 \: + \: 18.399)\)
A = 6(21.729)
= 130.374cm2
A ≅ 130cm2 (nearest whole number)
Answer⇒ Area ≅ 130cm2
Question
(a) A cottage is on a bearing of 200° and 110° from Dogbe’s and Manu’s farms respectively. If Dogbe walked 5 km and Manu 3 km from the cottage to their farms, find:
(i) correct to two significant figures, the distance between the two farms;
Solution
Let Dogbe = D, Cottage = C and Manu = M
Note: The angles in purple and red are alternate angles
|DM| = the distance between the two farms
From the sketch, ∠DCM = 90º
That means we can use Pythagoras’ theorem to find |DM|
|DM| = \( \scriptsize \sqrt{3^2 + 5^2} \)
i.e. \( \scriptsize |DM|^2 = |CD|^2 \: + \: |CM|^2 \)
|DM| = \( \scriptsize \sqrt{3^2 \: + \: 5^2} \\ = \scriptsize \sqrt{9 \: + \: 25} \\ = \scriptsize \sqrt{34}\\ = \scriptsize 5.831 \: km \\ \scriptsize \approx 5.8 \: km\)
Answer⇒  Distance between two farms ≅ 5.8km
(ii) correct to the nearest degree, the bearing of Manu’s farm from Dogbe’s.
tan θ = \( \frac{opp}{adj} \\ = \frac{3}{5} \\ = \scriptsize 0.6\)
θ = \( \scriptsize tan^{-1} 0.6 \)
θ = 30.9638º
Bearing = 30.9638 + 200
= 230.9638
Answer ⇒ the bearing of Manu’s farm from Dogbe’s ≅ 231º (nearest degree)
(b) A ladder 10m long leaned against a vertical wall high. The distance between the wall and the foot of the ladder is 2m longer than the height of the wall. Calculate the value of x
Solution
⇒ \( \scriptsize 10^2 = (x \: + \: 2)^2 \: + \: x^2 \)
⇒ \( \scriptsize 100 = (x \: + \: 2)(x \:+\:2) \: + \: x^2 \)
⇒ \( \scriptsize 100 = x^2 \: + \: 2x \: + \: 2x \: + \: 4\: + \: x^2 \)
⇒ \( \scriptsize 100 = 2x^2 \: + \: 4x \: + \: 4 \)
⇒ \( \scriptsize 2x^2 \: + \: 4x \: + \: 4 \: -\: 100 = 0\)
⇒ \( \scriptsize 2x^2 \: + \: 4x \: – \: 96= 0\)
divide through by 2
⇒ \( \scriptsize x^2 \: + \: 2x \: – \: 48 = 0\)
factorise
⇒ \( \scriptsize x^2 \: + \: 8x \: – \: 6x \: – \: 48 = 0\)
⇒ \( \scriptsize x(x \: + \: 8) \: – \: 6(x \: + \: 8) = 0\)
⇒ \( \scriptsize (x \: – \: 6)(x \: + \: 8) \)
x – 6 = 0 or x + 8 = 0
x = 6 or -8
Length can’t be negative
∴ x = 6m
Answer⇒ x = 6m
Question
The table shows the distribution of the number of hours per day spent in studying by 50 students
Calculate, correct to two decimal places, the:
(a) Mean;
Solution
X | F | fx | Fx2 |
4 | 5 | 20 | 80 |
5 | 7 | 35 | 175 |
6 | 5 | 30 | 180 |
7 | 9 | 63 | 441 |
8 | 12 | 96 | 768 |
9 | 4 | 36 | 324 |
10 | 3 | 30 | 300 |
11 | 5 | 55 | 605 |
 | ΣF=50 | ΣFx=365 | ΣFx2=2873 |
⇒ \(\scriptsize mean \: \bar{X} = \normalsize \frac{\sum Fx}{\sum F} \)
=\( \frac{365}{50} \)
⇒ \(\scriptsize mean \: \bar{X} = 7.30\: (2d.p) \)
Answer ⇒ mean – 7.30 (2d.p) Â
(b) Standard deviation
Solution
S.D = \( \sqrt{\frac{\sum Fx^2}{\sum F} \: -\: \left( \frac{\sum Fx}{\sum F}\right)^2} \)
S.D = \( \sqrt{\frac{2873}{50} \: -\: \left( \scriptsize 7.3 \right )^2} \)
= \( \scriptsize \sqrt{57.46 \: -\: 53.29} \)
= \( \scriptsize \sqrt{4.17} \)
= 2.0421
≅ 2.04 (2 d.p)
Answer ⇒ ≅ 2.04 (2 d.p)
Question
(a)
In the diagram, PQRS is a circle. |PQ| = |QS|, ∠SPR = 26º and the interior of angles of ΔPQS are in the ratio 2:3:3.
Calculate:
(i) ∠PQR
(ii) ∠RPQ
(iii) ∠PRQ
Solution
(a. i) ∠PQR
∠PSQ = ∠QPS
(base angles of isosceles)
Total ratio = 2 + 3 + 3
= 8
⇒ \( \scriptsize \angle PQS = \normalsize \frac{2}{8} \scriptsize \: \times \: 180^o \\ \scriptsize = 45^o \)
⇒ \( \scriptsize \angle SPQ = \angle PSQ = \normalsize \frac{3}{8}\scriptsize \: \times \: 180^o \\ \scriptsize = 67.5^o \)
⇒ \( \scriptsize \angle SQR = \angle SPQ = 26^o \)
⇒ \( \scriptsize \angle PQR = \angle PQS\: +\:\angle SRQ \)
= 45º + 26º
Answer ⇒  = 71º
(a.ii ) ∠RPQ
∠RPQ = ∠SPQ – ∠SPR
= 67.5º – 26º
Answer ⇒  = 41.5º
(a.iii) ∠PRQ
∠PRQ = 180 – 41.5 – 71
Answer ⇒ = 67.5º
(b) The coordinates of two points P and Q in a plane are (7, 3) and (5, x) respectively, where x is a real number.
If \( \scriptsize |PQ| = \sqrt{29} \: units, \) find the value of x
Solution
⇒ \( \scriptsize PQ^2 = (x_2 \: -\: x_1)^2 \: + \: (y_2 \: -\: y_1)^2 \)
⇒ \( \scriptsize PQ = (x_2 \: -\: x_1)^2 \: + \: (y_2 \: -\: y_1)^2 \)
⇒ \( \scriptsize x_2 = 5, \: x_1 = 7 \)
⇒ \( \scriptsize y_2 = x, \: y_1 = 3 \)
⇒ \( \scriptsize \sqrt{29} = \sqrt{(5\:-\:7)^2 \: +\: (x \: -\: 3)^2} \)
⇒ \( \scriptsize 29 = (-2)^2 \: + \: (x \: – \: 3)(x\:-\:3) \)
⇒ \( \scriptsize 29 = 4 \: + \: x^2 \: -\: 3x \: -\: 3x \: +\: 9 \)
⇒ \( \scriptsize 29 = 4 \: + \: x^2 \: -\: 6x \: +\: 9 \)
⇒ \( \scriptsize  x^2 \: -\: 6x \: +\: 9\: + \: 4 \: -\: 29 = 0 \)
⇒ \( \scriptsize  x^2 \: -\: 6x \: – \: 16= 0 \)
⇒ \( \scriptsize  x^2 \: -\: 8x \: + \: 2x \: – \: 16= 0 \)
⇒ \( \scriptsize  x(x \: -\: 8) \: +\: 2(x \: -\: 8) = 0 \)
⇒ \( \scriptsize  (x \: + \: 2)(x\:-\:8) = 0\)
x + 2 = 0 or x – 8 = 0
Answer ⇒ x = -2 or x = 8
Question
(a) On Sam’s first birthday celebration, his grandfather deposited an amount of $1,000.00 in a bank compounded at 4% interest annually. Find how much is in the account if Sam is 4 years old.
Solution
Amount at end of 2nd year
= \( \frac{104}{100}\scriptsize \: \times \: 1000 \)
= $1040
Amount at end of 3rd year
= \( \frac{104}{100}\scriptsize \: \times \: 1040 \)
= $1081
Amount at end of 4th year
= \( \frac{104}{100}\scriptsize \: \times \: 1081 \)
Answer ⇒ = $1124.86
(b)
NOT DRAW TO SCALE
In the diagram, ABCD are points on the circle O.
If |AB| = |BC| and ∠ADC = 50º, find ∠BAD
Solution
⇒ \( \scriptsize \angle DCA =90^0 \)
(angles in a semi-circle)
⇒ \( \scriptsize \angle DCA \: + \: \angle ADC \: + \: \angle CAD =180^0 \)
(angles in a triangle)
⇒ \( \scriptsize 90^o\: + \: 50^o \: + \: \angle CAD =180^0 \)
⇒ \( \scriptsize \angle CAD =180^0 \: -\: 140^o \)
= 40º
⇒ \( \scriptsize \angle ADC \: + \: \angle ABC = 180^0 \)
(cyclic quadrilateral)
⇒ \( \scriptsize 50 \: + \: \angle ABC = 180^0 \)
⇒ \( \scriptsize \angle ABC = 180^0 \: – \: 50^o \)
⇒ \( \scriptsize \angle ABC = 130^o \)
⇒ \( \scriptsize \angle BAC = \angle BCA \)
(base angles of isosceles)
⇒ \( \scriptsize \angle BAC \: + \: \angle BCA \: + \: \angle ABC = 180^o \)
(sum of angles in a triangle)
⇒ \( \scriptsize 2 \angle BAC \: + \: 130^o = 180^o \)
⇒ \( \scriptsize 2 \angle BAC = 180^o \: – \: 130^o \)
⇒ \( \scriptsize 2 \angle BAC = 50^o \)
⇒ \( \scriptsize \angle BAC = \normalsize \frac{50}{2} \)
⇒ \( \scriptsize \angle BAC = 25^o \)
⇒ \( \scriptsize \angle BAD = \angle BAC \: + \: \angle CAD\)
⇒ \( \scriptsize \angle BAD = 25 \: + \: 40\)
⇒ \( \scriptsize \angle BAD = 65^o\)
Answer ⇒ \( \scriptsize \angle BAD = 65^o\)
There was a problem reporting this post.
Please confirm you want to block this member.
You will no longer be able to:
Please note: This action will also remove this member from your connections and send a report to the site admin. Please allow a few minutes for this process to complete.