Back to Course

SS3: MATHEMATICS - 2ND TERM

0% Complete
0/0 Steps
  1. Matrices I | Week 1
    6 Topics
  2. Matrices II | Week 2
    1 Topic
    |
    1 Quiz
  3. Commercial Arithmetic | Week 3
    7 Topics
    |
    1 Quiz
  4. Coordinate Geometry | Week 4
    8 Topics
    |
    1 Quiz
  5. Differentiation of Algebraic Expressions | Week 5 & 6
    7 Topics
  6. Application of Differentiation | Week 7
    4 Topics
    |
    1 Quiz
  7. Integration | Week 8
    8 Topics
    |
    1 Quiz



  • Do you like this content?

  • Follow us

Lesson Progress
0% Complete

If y = uv , where u and v are functions of x,

then

\( \normalsize \frac{dy}{dx} = \scriptsize u \normalsize \frac{dv}{dx} + \scriptsize v \normalsize \frac{du}{dx}\)

Example: Differentiate \( \scriptsize (3x -2)(x^2 + 3) \) with respect to x

let u = (3x – 2) and v = x2 + 3

\( \frac{du}{dx} \scriptsize = 3\)

\( \frac{dv}{dx} \scriptsize = 2x \)

\( \normalsize \frac{dy}{dx} = \scriptsize u \normalsize \frac{dv}{dx} \times \scriptsize v \normalsize \frac{du}{dx}\)

\( \frac{dy}{dx} = \scriptsize (3x \; – \; 2) (2x) + (x^2 + 3) (3)\)

\( \frac{dy}{dx} = \scriptsize 6x^2 -4x + 3x^2 + 9 \)

=\( \frac{dy}{dx} = \scriptsize 9x^2 – 4x + 9 \)

Responses

Your email address will not be published. Required fields are marked *

back-to-top
error: