JSS1: MATHEMATICS - 2ND TERM
-
Algebraic Processes | Week 14 Topics|1 Quiz
-
Simplification of Algebraic Expressions | Week 24 Topics|1 Quiz
-
Simplification of Algebraic Expressions 2 (Use of Brackets) | Week 34 Topics|1 Quiz
-
Simple Equations | Week 41 Topic|1 Quiz
-
Simple Equations II | Week 53 Topics|1 Quiz
-
Plane Shapes I | Week 65 Topics|2 Quizzes
-
Plane Shapes II | Week 77 Topics|1 Quiz
-
Plane Shapes III | Week 87 Topics|1 Quiz
-
Decimals and Percentages I | Week 92 Topics|1 Quiz
-
Decimals and Percentages II | Week 103 Topics|1 Quiz
Perimeter of a Rectangle
Topic Content:
- Perimeter of a Rectangle
The longer side of a rectangle is usually called the length, and the shorter side is the breadth.
length = l
breadth = b

Perimeter of rectangle = \( \scriptsize l \: + \: b \: + \: l \: + \: b \\ = \scriptsize l \: + \: l \: + \: b \: + \: b \\ = \scriptsize 2l \: + \: 2b \\ = \scriptsize 2(l \: + \: b) \)
Perimeter of a Rectangle = 2l + 2b
Where l = Length
b = breadth
breadth (b) is also known as width (w)
Example 7.3.1:
The length of a rectangular room is 8 m, and the width (breadth) is 6 m. Find the perimeter of the room.
Solution:
Length of the room, l = 8 m
Breadth of the room, b = 6 m
Perimeter = 2 (l + b)
Perimeter = 2(8 + 6)
= 2 × 14
= 28 m
Example 7.3.2:
A rectangle is 5 m long and 2000 mm wide. Find the perimeter.
Solution:
First, convert to the same unit, so we will convert millimetres to metres. Remember there are 1000 millimetres in 1 metre.
breadth (b) = 2000 mm
= 2000 ÷ 1000
= \( \frac{2000}{1000}\: \scriptsize m \\ = \scriptsize 2 \:m \)
breadth (b) = 2 m
length (l) = 5 m

Perimeter = 2 (l + b)
= 2 × (5 + 2)
= 2 × 7
Perimeter = 14 m
Example 7.3.3:
A rectangle has a perimeter of 68 m. Find
a. the length of the rectangle if the breadth is 13 m
b. the breadth of the rectangle if the length is 24 m
Solution
a. Perimeter of a rectangle = 2(l + b)
Perimeter = 68 m
breadth (b) = 13 m
length (l) = ?
∴ \( \scriptsize 68 = 2(l \: + \: 13) \\ \scriptsize 2(l \: + \: 13) = 68 \\ \scriptsize (l \: + \: 13) = \normalsize \frac{68}{2} \\ \scriptsize l \: + \: 13 = 34 \\ \scriptsize l = 34 \: -\:13 \\ \scriptsize l = 21 \: m \)
b. Perimeter of a rectangle = 2(l + b)
Perimeter = 68 m
breadth (b) = ?
length (l) = 24 m
∴ \( \scriptsize 68 = 2(24 \: + \: b) \\ \scriptsize 2(24\: + \: b) = 68 \\ \scriptsize (24 \: + \: b) = \normalsize \frac{68}{2} \\ \scriptsize 24 \: + \: b = 34 \\ \scriptsize b = 34 \: -\:24 \\ \scriptsize b = 10 \: m \)