When solving a problem involving mixed arithmetic operations, we need to deal with the brackets () first, then Division ÷, and Multiplication \( \scriptsize \times \) and finally Addition + and Subtraction –
i.e. We apply the BODMAS rule,
B – Brackets ( )
O – Of
D – Division
M – Multiplication
A – Addition
S – Subtraction
Example 3.1.1:
\(\scriptsize 6 \: \times \: \left( 7 \: + \: 4 \right) \)
Solution
Using the BODMAS rule, we solve the bracket first before multiplying.
\(\scriptsize 6 \: \times \: \left( 7 \: + \: 4 \right) \\ \scriptsize = 6 \: \times \: 11 \\ \scriptsize = 66\)Similarly in algebra
\(\scriptsize 6 \: \times \: \left( 7x \: + \: 4x \right) \\ \scriptsize = 6 \: \times \: 11x \\ \scriptsize = 66x\)Example 3.1.2:
\( \scriptsize 12 \:\: – \: 8 \: \div \: 2 \)
Solution
Using the BODMAS rule, we solve the division first before subtracting.
\(\scriptsize 12 \:\: – \: 8 \: \div \: 2 \\ \scriptsize 12 \:\: – \: 4 = 8 \)Similarly in algebra
\(\scriptsize 12x \; – \: 8x \: \div \: 2 \\ \scriptsize 12x \; – \: 4x = 8x \)Example 3.1.3:
Simplify the following expressions using the BODMAS rule:
i) \( \scriptsize 3x \: + \: 3 \: \times \: 4x \)
ii) \( \scriptsize 9 \: \times \: 3x \; – \: \left(4x \: + \: 2x \right) \: \times \: 3 \)
iii) \( \scriptsize 8a \: \times \: 12a \: \div \: 2a \; – \: \left(13a \; – \: 3a \right) \)
iv) \(\scriptsize 5 \: \times \: 6y \; – \: 3y \: \times \: 4 \; – \: 4y \: \times \: 2 \)
Solution
i) \( \scriptsize 3x \: + \: 3 \: \times \: 4x \)
Using the BODMAS rule, we multiply first, before adding.
1st Step: Multiply, \( \scriptsize 3 \: \times \: 4x = 12x \)
What we now have is \( \scriptsize 3x \: + \: 12x \)
2nd Step: Addition, \( \scriptsize 3x \: + \: 12x \)
Answer = 15x
ii) \( \scriptsize 9 \: \times \: 3x \: – \: \left(4x \: + \: 2x \right) \: \times \: 3 \)
Using BODMAS rule, we solve the bracket first, before multiplying and finally, subtracting.
1st Step: Solve the bracket \( \scriptsize \left(4x \: + \: 2x \right) = 6x \)
\( \scriptsize 9 \: \times \: 3x\: – \: 6x\: \times \: 3 \)2nd Step: Multiply \( \scriptsize 9\: \times \: 3x \) first, ignore the minus sign for now, then multiply \( \scriptsize 6x \: \times \: 3 \)
\( \scriptsize 9 \: \times \: 3x = 27x \) \( \scriptsize 6x \: \times \: 3 = 18x \)= \( \scriptsize 27x \; – \: 18x \)
3rd Step: Finally we subtract \( \scriptsize 27x \; – \: 18x \)
Answer = 9x
iii) \( \scriptsize 8a \: \times \: 12a \: \div \: 2a \; – \: \left(13a \; – \: 3a \right) \)
Using the BODMAS rule, we solve the bracket first, before dividing and then multiplying.
1st Step: Solve the bracket \( \scriptsize \left(13a \; – \: 3a \right) = 10a \)
The equation now becomes;
\( \scriptsize 8a \: \times \: 12a \: \div \: 2a \; – \: 10a \)2nd Step: Divide, \( \scriptsize 12a \: \div \: 2a = \normalsize \frac{12\not{a}}{2\not{a}} \\ \scriptsize = 6 \)
The equation now becomes;
\( \scriptsize 8a \: \times \: 6 \; – \: 10a \)3rd Step: Multiply, \( \scriptsize 8a \: \times \: 6 = 48a \)
4th Step: Subtract, \( \scriptsize 48a \; – \: 10a \)
Answer = 38a
iv) \(\scriptsize 5 \: \times \: 6y \; – \: 3y \: \times \: 4 \; – \: 4y \: \times \: 2 \)
Using the BODMAS rule, we Multiply first, then subtract.
1st Step: Multiply
\( \scriptsize 5 \: \times \: 6y = 30y \) \( \scriptsize 3y \: \times \: 4 = 12y \) \( \scriptsize 4y \: \times \: 2 = 8y \)What we now have is;
\( \scriptsize 30y \; – \: 12y \; – \: 8y \)2nd Step: Subtract;
\( \scriptsize 30y \; – \: 12y \; – \: 8y \) \( \scriptsize 30y \; – \: 20y \) \( \scriptsize 30y \; – \: 20y \)Answer = 10y