Topic Content:
- Exponential Equations
- Evaluation Questions
The various laws of indices are also of importance in solving simple exponentials.
Let’s take a look at some examples.
Worked Examples 8.1.1:
Solve the following equations:
(a) \( \scriptsize 5^{2x – 4} = 25 ^{-x – 8}\)
(b) \( \scriptsize 8^x = 0.125 \)
(c) \( \scriptsize p^x = \normalsize \frac{ \sqrt[4] {p^5}\: \times \: p^{- \frac{1}{4}}}{ \left(\sqrt [3] {p}\right)^2} \)
(d) \( \frac {1}{4} \scriptsize \; of \; 64x = 16^{3x}\)
(e) \( \scriptsize 9^{x – 3} = 27 ^{x – 5}\)
(f) \( \scriptsize 9^{2x + 1} = \normalsize \frac {81 ^{x – 3}}{3^x}\)
(g) \( \scriptsize 7(8^{x + 1}) = 448\)
(h) \( \left(\frac {5}{6}\right)^{ \frac{1}{2}} = \left(\frac {6}{5}\right)^{x – 1}\)
(i) \( \frac {64}{27} = \left(\frac {3}{4}\right )^{^{\normalsize x – 1}}\)
Evaluation:
Solve the following;
(i) \( \scriptsize 9^{2x} = \normalsize \frac{81^{x-2}}{3^x} \)
(ii)\( \scriptsize 2^{2x} \: – \: 3\: \times \: 2^x \: + \: 2 = 0 \)