Back to Course

SS1: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  1. Number Base System I | Week 1
    6 Topics
    |
    2 Quizzes
  2. Number Base System II | Week 2
    3 Topics
  3. Number Base System III | Week 3
    2 Topics
    |
    1 Quiz
  4. Modular Arithmetic I | Week 4
    2 Topics
  5. Modular Arithmetic II | Week 5
    3 Topics
  6. Modular Arithmetic III | Week 6
    4 Topics
    |
    1 Quiz
  7. Indices I | Week 7
    3 Topics
    |
    1 Quiz
  8. Indices II | Week 8
    1 Topic
    |
    1 Quiz
  9. Logarithms I | Week 9
    3 Topics
  10. Logarithms II | Week 10
    4 Topics
    |
    1 Quiz



Lesson Progress
0% Complete

Topic Content:

  • Exponential Equations
  • Evaluation Questions

The various laws of indices are also of importance in solving simple exponentials.

Let’s take a look at some examples.

Worked Examples 8.1.1:

Solve the following equations:

(a) \( \scriptsize 5^{2x – 4} = 25 ^{-x – 8}\)

(b) \( \scriptsize 8^x = 0.125 \)

 

You are viewing an excerpt of this Topic. Subscribe Now to get Full Access to ALL this Subject's Topics and Quizzes for this Term!

Click on the button "Subscribe Now" below for Full Access!

Subscribe Now

Note: If you have Already Subscribed and you are seeing this message, it means you are logged out. Please Log In using the Login Button Below to Carry on Studying!

avatar

Responses

Your email address will not be published. Required fields are marked *

SOLUTION (a)

Question

⇒ \( \scriptsize 5^{2x – 4} = 25 ^{-x – 8}\)

Solution

We know \( \scriptsize 25 = 5^2 \)

∴ \( \scriptsize 5^{2x – 4} = 5^{2(-x – 8)}\)

⇒ \( \scriptsize 5^{2x – 4} = 5^{-2x\: – \:16}\)

Since we have equal base, we can equate the like terms

i.e. \( \scriptsize 2x \: – \: 4 = \: -2x \: – \: 16 \)

Collecting like terms

⇒ \( \scriptsize 2x \: + \: 2x = \: -16 \: +\: 4 \)

\( \scriptsize 4x  = \: -12 \)

Divide both sides by 4

⇒ \( \frac{4x}{4} = \frac{-12}{4} \)

⇒ \(\scriptsize x = \: -3 \)

SOLUTION (b)

Question

⇒ \( \scriptsize 8^x = 0.125 \)

Solution

Change the decimal to fraction

∴ \( \scriptsize 8^x = \normalsize \frac {125}{1000} \)

⇒ \( \scriptsize 8^x = \normalsize \frac {1}{8} \)

⇒ \( \scriptsize 8^x = 8^{-1} \)

Since we have equal base we can equate the powers

x = -1

SOLUTION (c)

Question

⇒ \( \scriptsize p^x = \normalsize \frac{ \sqrt[4] {p^5}\: \times \: p^{- \frac{1}{4}}}{ \left(\sqrt [3] {p}\right)^2} \)

Solution

⇒ \( \scriptsize p^x = \normalsize \frac{ p^{ 5 \: \times \: \frac {1}{4}} \: \times \: p^{ -\frac{1}{4}}}{ \left(\sqrt [3] {p}\right)^2} \)

⇒ \( \scriptsize p^x = \normalsize \frac{ p^{ \frac {5}{4}} \: \times \: p^{- \frac{1}{4}}}{ \left(\sqrt [3] {p}\right)^2} \)

⇒ \( \scriptsize p^x = \normalsize \frac{ p^{ \frac {5}{4}} \: \times \: p^{- \frac{1}{4}}}{ \left(p^{ \frac{1}{3}}\right) ^{^2}} \)

⇒ \( \scriptsize p^x = \normalsize \frac{ p^{ \frac {5}{4}} \: \times \: p^{ -\frac{1}{4}}}{ p^{ \frac{1}{3} \: \times \: 2}} \)

⇒ \( \scriptsize p^x = \normalsize \frac{ p^{^{ \normalsize \frac {5}{4}\:  – \:\frac{1}{4}}}}{ p^{^{ \normalsize\frac{2}{3}}}} \)

= \( \scriptsize p^x = \normalsize \frac{ p^{^{ \normalsize \frac {4}{4}}}}{ p^{^{ \normalsize\frac{2}{3}}}} \)

⇒ \( \scriptsize p^x = \normalsize \frac{ p^{ 1}}{ p^{ \frac{2}{3}}} \)

⇒ \( \scriptsize p^x = p^{ \left( 1 \:-\: \normalsize\frac{2}{3}\right)} \)

\( \scriptsize p^x =  p^{^{\left(\normalsize \frac{3}{3} \:-\: \frac{2}{3}\right) }} \)

⇒ \( \scriptsize p^x =  p^{\normalsize\frac{1}{3}} \)

(equating powers)

Therefore, \( \scriptsize x = \normalsize \frac {1}{3}\)

SOLUTION (d)

Question

⇒ \( \frac {1}{4} \scriptsize \: of \: 64x = 16^{3x}\)

Solution

⇒ \( \scriptsize 4^{-1} \times (4^3)^x = (4^2)^{3x}\)

(equating powers)

⇒ \( \scriptsize 4^{3x – 1} = 4^{6x}\)

Therefore, \( \scriptsize 3x \: – \: 1 = 6x \)

Collect like terms

\( \scriptsize 3x \: -\: 6x = 1\)

i.e. \( \scriptsize -3x = 1 \)

⇒ \( \scriptsize x = \: – \normalsize \frac {1}{3} \)

SOLUTION (e)

Question

⇒ \( \scriptsize 9^{x – 3} = 27 ^{x – 5}\)

Solution

⇒ \( \scriptsize 3^{2(x – 3)} = 3^{3(x – 5)}\)

equating powers

  2(x – 3) = 3(x – 5)

⇒ 2x – 6 = 3x – 15

(collect like terms)

2x 3x = 15 + 6

–x = 9

divide both sides by -1

x = 9

SOLUTION (f)

Question

⇒ \( \scriptsize 9^{2x + 1} = \normalsize \frac {81 ^{x – 3}}{3^x}\)

Solution

⇒ \( \scriptsize 3^{2 (2x + 1)} = \normalsize \frac {3 ^{4(x – 3)}}{3^x}\)

⇒ \( \scriptsize 3^{2 (2x + 1)} = 3^{4(x – 3) – x}\)

(equating powers)

2(2x + 1) = 4(x – 3) – x

open brackets

4x + 2 = 4x – 12 – x

4x + 2 = 4x – x – 12

i.e. 4x + 2 = 3x – 12

(collect like terms)

4x 3x = 12 2

⇒ x = –14

SOLUTION (g)

Question

⇒ \( \scriptsize 7(8^{x + 1}) = 448\)

Solution

Divide both sides by 7

⇒ \( \frac {7(8^{x + 1})}{7} = \frac {448}{7}\)

⇒ \( \scriptsize 8^{x + 1} = 64 \)

⇒ \( \scriptsize 8^{x + 1} = 8^2 \)

(equating powers)

i.e.     x + 1 = 2

x = 2 – 1

x = 1

SOLUTION (h)

Question

⇒ \( \left(\frac {5}{6}\right)^{ \frac{1}{2}} = \left(\frac {6}{5}\right)^{x – 1}\)

Solution

Recall 

⇒ \(\left( \frac {5}{6}\right)^{ \frac{1}{2}} = \left(\frac {6}{5}\right)^{ – \frac{1}{2}}\)

⇒ \(\left(\frac {6}{5}\right)^{ – \frac{1}{2}} = \left(\frac {6}{5}\right)^{x – 1}\)

Therefore, equating powers, we have

⇒ \( – \frac{1}{2}  \scriptsize = x\:  – \:  1\)

⇒ \( \scriptsize x = 1\:  –  \: \normalsize \frac{1}{2}\)

⇒ \( \scriptsize x = \normalsize\frac{1}{2}\)

SOLUTION (i)

Question

⇒ \( \frac {64}{27} = \left(\frac {3}{4}\right )^{^{\normalsize x – 1}}\)

Solution

Invert the fraction and change the index to negative index.

i.e. \( \frac {4^3}{3^3} = \left(\frac {4}{3}\right )^{-(x – 1)}\)

⇒ \(\left ( \frac {4}{3}\right)^3 = \left ( \frac {4}{3}\right )^{-(x – 1)}\)

(equating powers)

i.e.  3 = -(x – 1)

⇒ 3 = -x + 1

⇒  x = -2

error: Alert: Content selection is disabled!!