JSS3: MATHEMATICS - 1ST TERM
-
Binary Number System I | Week 15 Topics|1 Quiz
-
Binary Number System II | Week 26 Topics|1 Quiz
-
Word Problems I | Week 34 Topics|1 Quiz
-
Word Problems with Fractions II | Week 41 Topic|1 Quiz
-
Factorization I | Week 54 Topics|1 Quiz
-
Factorization II | Week 63 Topics|1 Quiz
-
Factorization III | Week 73 Topics|1 Quiz
-
Substitution & Change of Subject of Formulae | Week 82 Topics|1 Quiz
-
Simple Equations Involving Fractions | Week 93 Topics|1 Quiz
-
Word Problems | Week 101 Topic|1 Quiz
Perfect Squares
Topic Content:
- Perfect Squares
- Perfect square with a + sign between the two numbers
Perfect square with a negative sign between the two numbers
Worked Examples
- Perfect square with a + sign between the two numbers
A perfect square with a + sign between the two numbers:
(x + a)2 = ( x + a) (x + a)
⇒ x (x + a) + a (x + a)
⇒ x2 + ax + ax + a2
⇒ (x + a)2 = x2 + 2ax + a2
We can state the above result as follows:
The first term squared + twice their product + the square of the second term.
A perfect square with a negative sign between the two numbers:
(x – a)2 = (x – a) (x – a)
⇒ x(x – a) – a (x – a)
⇒ x2 – ax – ax – a2
⇒ x2 – 2ax – a2
⇒ (x – a)2 = x2 – 2ax + a2.
We can state the above result as follows:
the first term squared – twice their product + the square of the second term.
Worked Example 7.1.1:
Write down the expansions of the following:
a. (y + 8)2
b. (y – 5)2
c. (7a – 3)2
d. (2y – 6)2
e. (5x + 4y)2
Solution
a. (y + 8)2
⇒ (y + 8) (y + 8)
⇒ y (y + 8) + 8 (y + 8)
⇒ y2 + 8y + 8y + 64
= y2 + 16y + 64
b. (y – 5)2
⇒ (y – 5) (y – 5)
⇒ y (y – 5) – 5 ( y – 5)
⇒ y2 – 5y – 5y + 25
= y2 – 10y + 25
c. (7a – 3)2
⇒ (7a – 3) (7a – 3)
⇒ 7a (7a – 3) – 3 (7a – 3)
⇒ 49a2 – 21a – 21a + 9
= 49a2 – 42a + 9
d. (2y – 6)2
⇒ (2y – 6) (2y – 6)
⇒ 2y (2y – 6) – 6 (2y – 6)
⇒ 4y2 – 12y – 12y + 36
= 4y2 – 24y + 36
e. (5x + 4y)2
⇒ (5x + 4y) (5x + 4y)
⇒ 5x (5x + 4y) + 4y (5 + 4y)
⇒ 25x 2 + 20xy + 20xy + 16y2
= 25x2 + 40xy + 16y2
Worked Example 7.1.2:
Factorize the following expressions:
i. x2 + 4x + 4
ii. x2 + 8x + 16
iii. x2 – 6x + 9
Solution
i. x2 + 4x + 4
⇒ x2 + 2x + 2x + 4
⇒ (x2 + 2x) + (2x + 4)
⇒ x (x + 2) + 2(x + 2)
⇒ (x + 2) (x + 2)
= (x + 2)2
ii. x2 + 8x + 16
⇒ x2 + 4x + 4x + 16
⇒ (x2 + 4x) + (4x + 16)
⇒ x(x + 4 ) + 4(x + 4)
⇒ (x + 4) (x + 4)
= ( x + 4)2
iii. x2 – 6x + 9
⇒ x2 – 3x – 3x + 9
⇒ (x2 – 3x) – (3x – 9)
⇒ x(x – 3) – 3(x – 3)
⇒ (x – 3)(x – 3)
= (x – 3)2