Back to Course

JSS3: MATHEMATICS - 1ST TERM

0% Complete
0/0 Steps
  1. Binary Number System I | Week 1
    5 Topics
    |
    1 Quiz
  2. Binary Number System II | Week 2
    6 Topics
    |
    1 Quiz
  3. Word Problems I | Week 3
    4 Topics
    |
    1 Quiz
  4. Word Problems with Fractions II | Week 4
    1 Topic
    |
    1 Quiz
  5. Factorization I | Week 5
    4 Topics
    |
    1 Quiz
  6. Factorization II | Week 6
    3 Topics
    |
    1 Quiz
  7. Factorization III | Week 7
    3 Topics
    |
    1 Quiz
  8. Substitution & Change of Subject of Formulae | Week 8
    2 Topics
    |
    1 Quiz
  9. Simple Equations Involving Fractions | Week 9
    3 Topics
    |
    1 Quiz
  10. Word Problems | Week 10
    1 Topic
    |
    1 Quiz
  • excellence
  • Follow

Lesson 6, Topic 3
In Progress

Factorization of Trinomials of the Form x² + bx + c

Lesson Progress
0% Complete

Topic Content:

  • Factorization of Trinomials of the Form x² + bx + c

A trinomial is an algebraic expression containing three terms.

For example, ax2 + b  + c is a trinomial because it has three terms i.e. ax2, bx, c  when a = 1 this expression becomes x2 + b x  + c,  a simple trinomial.

Some quadratic expressions can be factorized by splitting the middle term.

Therefore, to factorize a trinomial of the form ax2 + bx + c, look for pairs of factors of the constant term c that add up to b i.e. the coefficient of x.

Worked Example 6.3.1:

Factorize:

a. x2 + 7x  + 10
b. x2 + 3x  + 2
c. x2 + 8x  + 15
d. y2 + 9y + 18
e. 2x2 + 13x + 6

Solution

a. x2 + 7x  + 10

Screenshot 2023 08 22 at 13.37.39

i. First multiply The first and the last term i.e. a × c

ii. Look for the factors of 10x2, two factors when they are multiplied give 10x2 and when added they give 7x, which is the middle term.

Screenshot 2023 08 22 at 13.43.20

Factors of 10: 1, 2, 5 and 10

Factors of 10x2 that add up to 7x are 2x and 5x

that is:

2x × 5x = 10x2
2x + 5x = 7x

⇒ \( \scriptsize 2x \: \times \: 5x = 10x^2 \)

⇒ \( \scriptsize 2x \: + \: 5x = 7x \)

So replace 7x with 2x + 5x

⇒  x2 + 2x  + 5x + 10

Factorize by grouping

⇒ (x2 + 2x ) + (5x + 10)

x (x + 2 ) + 5 (x + 2)

= (x + 5 )(x + 2)

b.   x2 + 3x  + 2

Screenshot 2023 08 22 at 13.49.38

Factors of 2: 1 and 2

∴ Factors of 2x2 that add up to 3x are 2x and 1x

So replace 3x with 2x + 1x

⇒  x2 + 2x  + 1x + 2

Factorize by grouping

⇒ (x2 + 2x ) + (x  + 2)

x(x + 2) + 1(x  + 2)

= (x  + 1)(x  + 2)

c.   x2 + 8x  + 15

Factors of 15: 1, 3, 5 and 15.

Screenshot 2023 08 22 at 13.51.08

⇒  x2 + 3x + 5x + 15

 ⇒ (x 2 + 3x) + (5x + 15)

  ⇒ x(x + 3) + 5(x + 3)

= (x + 5)(x + 3)

d. y2 + 9y + 18

Factors of 18: 1, 2, 3, 6, 9 and 18

Screenshot 2023 08 22 at 14.09.40

y2 + 3y + 6y + 18

⇒ (y2 + 3y) + (6y + 18)

⇒ y (y + 3) + 6(y + 3)

= (y + 6)( y + 3)

e.  2x2 + 13x + 6

Factors of 6: 1, 2, 3, 4, 6, and 12.

Screenshot 2023 08 22 at 13.56.13

⇒  2x2 + 12x + x + 6

⇒ (2x2 + 12x ) + (x  + 6)

⇒ 2x (x + 6) + 1(x + 6)

= (2x + 1)(x + 6)

Worked Example 6.3.2:

Factorize:

i. 4x2 – 3x – 22
ii. 2e2 – 3e + 1

Solution

i. 4x2 – 3x – 22

Factors of 88: 1, 2, 4, 8, 11, 22, 44, and 88

+ 8x – 11x = -3x or -11x + 8x = -3x

Screenshot 2023 08 22 at 14.12.49

⇒ 4x2 + 8x – 11x – 22

⇒ (4x2 + 8x ) – (11x + 2)

⇒ 4x (x + 2) – 11 (x  + 2)

= (4x – 11) (x  + 2)

ii. 2e2 – 3e + 1

Screenshot 2023 08 22 at 14.16.43

⇒ 2e2e – 2e + 1

⇒ (2e2e) – (2e – 1)

e(2e1) – 1(2e – 1)

= (e – 1)(2e – 1)