JSS2: MATHEMATICS - 2ND TERM
-
Transactions in the Homes and Offices | Week 18 Topics|1 Quiz
-
Expansion and Factorization of Algebraic Expressions | Week 24 Topics|1 Quiz
-
Algebraic Expansion and Factorization of Algebraic Expression | Week 34 Topics|1 Quiz
-
Algebraic Fractions I | Week 44 Topics|1 Quiz
-
Addition and Subtraction of Algebraic Fractions | Week 52 Topics|1 Quiz
-
Solving Simple Equations | Week 64 Topics|1 Quiz
-
Linear Inequalities I | Week 74 Topics|1 Quiz
-
Linear Inequalities II | Week 82 Topics|1 Quiz
-
Quadrilaterals | Week 92 Topics|1 Quiz
-
Angles in a Polygon | Week 104 Topics|1 Quiz
-
The Cartesian Plane Co-ordinate System I | Week 113 Topics|1 Quiz
-
The Cartesian Plane Co-ordinate System II | Week 121 Topic|1 Quiz
Complete Factorization
Topic Content:
- Complete Factorization
To factorize an expression, divide each term of the expression by its common factor.
To factorize completely, use the Highest Common Factor (HCF).
Example 3.4.1:
Factorize completely
(a) 2a + 4ab
(b) 5x + 10y
(c) 15mn2 – 10m2n2
(d) \( \frac{2 \pi r}{T} \: + \: \frac{2 \pi r^2}{T^2} \: – \: \frac{2 \pi r^3}{T^3} \)
Solution
(a) 2a + 4ab
Step 1: find the HCF of 2a and 4ab
HCF = 2 × a = 2a
⇒ 2a + 4ab
= 2a (1 + 2b) → last
(b) 5x + 10y
Find the HCF of 5x and 10y
HCF = 5
⇒ 5x + 10y
= 5(x + 2y) → last
(c) 15mn3 – 10m2n2
Find the HCF
HCF = 5 × m × n × n
= 5mn2
⇒ 15mn3 – 10m2n2
= 5mn2 (3n – 2m) → last
(d) \( \frac{2 \pi r}{T} \: + \: \frac{2 \pi r^2}{T^2} \: – \: \frac{2 \pi r^3}{T^3} \)
2 | \( \frac{2 \pi r}{T} \) | + \( \frac{2 \pi r^2}{T^2} \) | – \( \frac{2 \pi r^3}{T^3} \) |
π | \( \frac{ \pi r}{T} \) | + \( \frac{ \pi r^2}{T^2} \) | – \( \frac{\pi r^3}{T^3} \) |
r | \( \frac{r}{T} \) | + \( \frac{ r^2}{T^2} \) | – \( \frac{r^3}{T^3} \) |
\( \frac{1}{T} \) | \( \frac{1}{T} \) | + \( \frac{ r}{T^2} \) | – \( \frac{r^2}{T^3} \) |
1 | + \( \frac{ r}{T} \) | – \( \frac{r^2}{T^2} \) |
H.C.F = \( \scriptsize 2 \: \times \: \pi \: \times \: r \: \times \: \normalsize \frac{1}{T} \)
H.C.F = \(\frac{2 \pi r}{T} \)
⇒ \( \frac{2 \pi r}{T} \: + \: \frac{2 \pi r^2}{T^2} \: – \: \frac{2 \pi r^3}{T^3} \)
= \(\frac{2 \pi r}{T} \left (\scriptsize 1 \: + \: \normalsize \frac{r}{T} \: -\: \frac{r^2}{T^2} \right)\)
Evaluation Questions:
Factorize completely each of the following
- 4x2y + 12xy2
- 17m – 34m2
- 5k2 – k
- 35p + 20p2
- 9ab + 3a
- mn3 – 3gmn – g3m2n3
- \( \frac{mv}{t} \: -\: \frac{mu}{t} \)
Answer
- 4xy (x + 3y)
- 17m (1 – 2m)
- K (5k – 1)
- 5p (7 + 4p)
- 3a (3b + 1)
- mn (n2 – 3g – g3mn2)
- \( \frac{m}{t} \scriptsize (v \: -\: u) \)