Topic Content:
- Problems on Linear, Area, and Cubic Expansivity
Note: ( β = 2α , γ = 3α)
Remember
Area Expansivity formula: A2 = A1 + β A1( θ2 – θ1)
Cubic Expansivity formula: \( \scriptsize V_2 = V_1 \: + \: \gamma V_1(\theta_2 \: – \: \theta_1)\)
Therefore, Area and cubical expansivity can also be written as
A2 = A1 + A12α ( θ2 – θ1)
or
A2 = A1(1 + 2α( θ2 – θ1))
V2 = V1 + V13α ( θ2 – θ1)
or
V2 = V1(1 + 3α( θ2 – θ1))
Example 10.6.1:
If the cubic expansivity of brass between 27°C and 1000°C is 5.7 × 10-5 K-1, what is its linear expansivity?
Solution
Cubic expansivity, γ = 5.7 × 10-5 K-1
linear expansivity, α = ?
Using the formula, γ = 3α
Therefore, 5.7 × 10-5 = 3α
\( \scriptsize \alpha = \normalsize \frac{5.7 \: \times \: 10^{-5}}{3} \) \( \scriptsize \alpha = 1.95 \: \times \: 10^{-5}\)Example 10.6.2:
A blacksmith heated a metal whose cubic expansivity is 6.3 × 10-6 K-1. What is the area expansivity?
In the question we are given the value for cubic expansivity. We can use this value to get the linear expansivity and then use the value of linear expansivity to calculate the area expansivity.
\( \scriptsize \gamma = 6.3 \: \times \: 10^{-6}\:K^{-1}\) \( \scriptsize \gamma = 3 \alpha\) \( \scriptsize 6.3 \: \times \: 10^{-6}\:K^{-1} = 3 \: \times \: \alpha \) \( \scriptsize \therefore \alpha = \normalsize \frac{6.3 \: \times \: 10^{-6}\:K^{-1}}{3}\) \( \scriptsize \alpha = 2.1 \: \times \: 10^{-6}\:K^{-1}\)Area expansivity \( \scriptsize \beta = 2 \alpha \)
\(\scriptsize \beta = 2 \: \times \: 2.1 \: \times \: 10^{-6}\: K^{-1}\) \(\scriptsize \beta = 4.2 \: \times \: 10^{-6}\: K^{-1}\)Example 10.6.3:
The linear expansivity of a metal cube is 1.8 × 10-6 K-1. If the length of each side of the cube is 15 cm, find the area and volume of the cube when its temperature is increased by 60°.
Solution
L = 15 cm, θ = 60°
α = 1.8 × 10-6 K-1
Initial area = L × b = 15 × 15 = 225 cm2
Initial volume = L × b × h = 15 × 15 × 15 = 3375 cm3
Area expansivity β = 2α = 2 × 1.8 × 10-6 K-1 = 3.6 × 10-6 K-1
Cubic expansivity γ = 3α = 3 × 1.8 × 10-6 K-1 = 5.4 × 10-6 K-1
New Area, A2 = A1(1 + 2 αθ)
= 225(1 + 3.6 × 10-6 × 60)
= 225(1 + 0.000216)
= 225(1.000216)
= 225 × 1.000216 = 225.0486 cm2
New volume, V2 = V1(1 + 3αθ)
= 3375 (1 + 5.4 × 10-6 × 60)
= 3375 (1 + 0.000324)
= 3375 (1.000324)
= 3375 × 1.000324
= 3376.0935 cm3