Back to Course

SS1: PHYSICS – 1ST TERM

0% Complete
0/0 Steps
  1. Introduction to Physics | Week 1
    4 Topics
    |
    1 Quiz
  2. Measurement I | Week 2
    3 Topics
    |
    1 Quiz
  3. Measurement II | Week 3
    6 Topics
    |
    1 Quiz
  4. Motion | Week 4
    5 Topics
    |
    1 Quiz
  5. Velocity-Time Graph | Week 5
    4 Topics
    |
    1 Quiz
  6. Causes of Motion | Week 6
    5 Topics
    |
    1 Quiz
  7. Work, Energy & Power | Week 7
    3 Topics
  8. Energy Transformation / Power | Week 8
    3 Topics
    |
    1 Quiz
  9. Heat Energy | Week 9
    5 Topics
    |
    1 Quiz
  10. Linear Expansion | Week 10
    7 Topics
    |
    1 Quiz
  • excellence
  • Follow

Lesson 10, Topic 6
In Progress

Problems on Linear, Area, and Cubic Expansivity

Lesson Progress
0% Complete

Topic Content:

  • Problems on Linear, Area, and Cubic Expansivity

Note: ( β = 2α , γ = 3α)

Remember

Area Expansivity formula: A2 = A1 +  β A1( θ2 – θ1)

Cubic Expansivity formula: \( \scriptsize V_2 = V_1 \: + \: \gamma V_1(\theta_2 \: – \: \theta_1)\)

Therefore, Area and cubical expansivity can also be written as 

A= A1 + A12α ( θ2 –  θ1)

or

A= A1(1 + 2α( θ2 –  θ1))

V= V+ V13α ( θ2 –  θ1)

or

V= V1(1 + 3α( θ2 –  θ1))

Example 10.6.1:

If the cubic expansivity of brass between 27°C and 1000°C is 5.7 × 10-5 K-1, what is its linear expansivity?

Solution

Cubic expansivity, γ = 5.7 × 10-5 K-1

linear expansivity, α = ?

Using the formula, γ = 3α

Therefore, 5.7 × 10-5 = 3α

\( \scriptsize \alpha = \normalsize \frac{5.7 \: \times \: 10^{-5}}{3} \)

\( \scriptsize \alpha = 1.95 \: \times \: 10^{-5}\)

Example 10.6.2:

A blacksmith heated a metal whose cubic expansivity is 6.3 × 10-6 K-1. What is the area expansivity?

In the question we are given the value for cubic expansivity. We can use this value to get the linear expansivity and then use the value of linear expansivity to calculate the area expansivity.

\( \scriptsize \gamma = 6.3 \: \times \: 10^{-6}\:K^{-1}\)

\( \scriptsize \gamma = 3 \alpha\)

\( \scriptsize 6.3 \: \times \: 10^{-6}\:K^{-1} = 3 \: \times \: \alpha \)

\( \scriptsize \therefore \alpha = \normalsize \frac{6.3 \: \times \: 10^{-6}\:K^{-1}}{3}\)

\( \scriptsize \alpha = 2.1 \: \times \: 10^{-6}\:K^{-1}\)

Area expansivity \( \scriptsize \beta = 2 \alpha \)

\(\scriptsize \beta = 2 \: \times \: 2.1 \: \times \: 10^{-6}\: K^{-1}\)

\(\scriptsize \beta = 4.2 \: \times \: 10^{-6}\: K^{-1}\)

Example 10.6.3:

The linear expansivity of a metal cube is 1.8 × 10-6 K-1. If the length of each side of the cube is 15 cm, find the area and volume of the cube when its temperature is increased by 60°.

Solution

L = 15 cm, θ = 60°

α = 1.8 × 10-6 K-1

Initial area = L × b = 15 × 15 = 225 cm2

Initial volume = L × b × h  = 15 × 15 × 15  = 3375 cm3

Area expansivity  β = 2α =   2 × 1.8 × 10-6 K-1  = 3.6 × 10-6 K-1  

Cubic expansivity γ = 3α = 3 × 1.8 × 10-6 K-1   = 5.4 × 10-6 K-1  

New Area, A2 = A1(1 + 2 αθ)

= 225(1 + 3.6 × 10-6 × 60)

= 225(1 + 0.000216)

= 225(1.000216)

= 225 × 1.000216 = 225.0486 cm2

New volume, V2 = V1(1 + 3αθ)

      = 3375 (1 + 5.4 × 10-6 × 60)

      = 3375 (1 + 0.000324)

      = 3375 (1.000324)

      = 3375 × 1.000324

      = 3376.0935 cm3

Subscribe
Notify of
guest
0 Comments
Oldest
Newest
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x